(Ferro) Magnetismus

Bereits im Altertum entdeckte man, dass Magnetitkristalle einander je nach Orientierung anziehen oder abstoßen. Dieses physikalische Phänomen wird als Magnetismus bezeichnet. Magnetit ist, ebenso wie Magnesium nach Magnisia benannt, einer Region in Thessalien im alten Griechenland.

magnetische Trennung

Für den Magnetismus ist das vorhandene Eisen verantwortlich. Viele Eisenlegierungen weisen Magnetismus auf. Neben Eisen verfügen auch Nickel, Cobalt und Gadolinium über magnetische Eigenschaften.

Gegenstände, bei denen dieses Phänomen auftritt, werden Magnete genannt. Es gibt natürliche und künstliche Magnete (z. B. Alnico, Fernico, Ferrit). Alle Magneten haben zwei Pole, die Nordpol und Südpol genannt werden. Der Nordpol eines Magneten stößt den Nordpol eines anderen Magneten ab und zieht den Südpol des anderen Magneten an. Zwei Südpole stoßen einander ebenfalls ab.

Magnetgreifer

Weil auch die Erde über ein Magnetfeld, mit einem magnetischen Südpol in der Nähe des geografischen Nordpols und einem magnetischen Nordpol in der Nähe des geografischen Südpols, verfügt, wird ein frei drehender Magnet sich immer in Nord-Südrichtung ausrichten. Die Bezeichnungen der Pole eines Magneten sind hiervon abgeleitet. Übrigens wird der Einfachheit halber, aber trotzdem recht verwirrend, der Südpol des „Erdmagneten“ als magnetischer Nordpo bezeichnet und der Nordpol des „Erdmagneten“ als magnetischer Südpol.

Magnetfeld-N-S Magnetfeldlinien

Ein verwandtes Phänomen ist Elektromagnetismus, Magnetismus, der durch elektrischen Strom entsteht. Im Wesentlichen wird jeglicher Magnetismus durch sowohl rotierende als auch revoluierende elektrische Ladungen in Kreisströmen erzeugt.

Elektromagnetismus

Lesen Sie mehr

Temperatura Curie

Określenie temperatura Curie pochodzi od nazwiska Piotra Curie (1859-1906).

Magnetyzm; temperatura Curie

Temperatura Curie to temperatura powyżej której materiały ferromagnetyczne tracą swoje trwałe pole magnetyczne; zjawisko magnetyzmu zanika całkowicie.

Powyżej tej temperatury materiał zachowuje się paramagnetycznie. Wraz ze wzrostem temperatury zmiany molekularne stopniowo zakłócają jednorodność spinów. Po osiągnięciu temperatury Curie jednorodność zostaje utracona, ponieważ energia termiczna przewyższyła energię interakcji magnetycznej.

Dokładne zmierzenie temperatury Curie jest trudne. Po pierwsze — trwałe pole magnetyczne wokół materiału zanika tylko częściowo. Po drugie — temperatura Curie waha się znacznie w zależności od nawet najmniejszych ilości zanieczyszczeń w materiale.

Na przykład: jeżeli magnes AlNiCo zostanie podgrzany powyżej jego temperatury Curie równej 850°C, utraci on swoje właściwości ferromagnetyczne. Stanie jest paramagnetykiem. Po ponownych schłodzeniu trwałe pole magnetyczne nie zostaje przywrócone. Pojawią się jednak nowe pola magnetyczne w niewielkich obszarach materiału, tzw. domeny Weissa (Weiss 1865-1904), lecz te obszary są jednorodne w losowych kierunkach, dlatego suma ich wektorów nie daje rezultatu w postaci zewnętrznego pola magnetycznego. Niemniej jednak ponowna magnetyzacja magnesu jest możliwa.

Pierwiastki ferromagnetyczne i stopy oraz ich wartości temperatury Curie:

Materiał Temp. Curie
Fe 770°C
Co 1115°C
Ni 354°C
Gd 19°C
AlNiCo 850°C
Ferryt 450°C
Kobalt samaru 750-825°C
Nd-Fe-B 310-340°C

 

Magnetmaterialien

Ferritmagnete
 
 

Ferritmagnete Weiter lesen

Neodym (Neoflux®) Magnete

Neodym Neoflux Magnete Weiter lesen

Samarium-Kobalt Magnete
 

Samarium-Kobalt Magnete Weiter lesen

Aluminium-Nickel-Kobalt Magnete

Aluminium Nickel Kobalt Magneten Weiter lesen

Kunststoff-gebundene Magnete

Kunststoffgebunde Magnete Weiter lesen