Filter werden angewendet...

(Ferro) Magnetismus

Bereits im Altertum entdeckte man, dass Magnetitkristalle einander je nach Orientierung anziehen oder abstoßen. Dieses physikalische Phänomen wird als Magnetismus bezeichnet. Magnetit ist, ebenso wie Magnesium nach Magnisia benannt, einer Region in Thessalien im alten Griechenland.

magnetische Trennung

Für den Magnetismus ist das vorhandene Eisen verantwortlich. Viele Eisenlegierungen weisen Magnetismus auf. Neben Eisen verfügen auch Nickel, Cobalt und Gadolinium über magnetische Eigenschaften.

Gegenstände, bei denen dieses Phänomen auftritt, werden Magnete genannt. Es gibt natürliche und künstliche Magnete (z. B. Alnico, Fernico, Ferrit). Alle Magneten haben zwei Pole, die Nordpol und Südpol genannt werden. Der Nordpol eines Magneten stößt den Nordpol eines anderen Magneten ab und zieht den Südpol des anderen Magneten an. Zwei Südpole stoßen einander ebenfalls ab.

Magnetgreifer

Weil auch die Erde über ein Magnetfeld, mit einem magnetischen Südpol in der Nähe des geografischen Nordpols und einem magnetischen Nordpol in der Nähe des geografischen Südpols, verfügt, wird ein frei drehender Magnet sich immer in Nord-Südrichtung ausrichten. Die Bezeichnungen der Pole eines Magneten sind hiervon abgeleitet. Übrigens wird der Einfachheit halber, aber trotzdem recht verwirrend, der Südpol des „Erdmagneten“ als magnetischer Nordpo bezeichnet und der Nordpol des „Erdmagneten“ als magnetischer Südpol.

Magnetfeld-N-S Magnetfeldlinien

Ein verwandtes Phänomen ist Elektromagnetismus, Magnetismus, der durch elektrischen Strom entsteht. Im Wesentlichen wird jeglicher Magnetismus durch sowohl rotierende als auch revoluierende elektrische Ladungen in Kreisströmen erzeugt.

Elektromagnetismus

Lesen Sie mehr

Curieova teplota

Curieova teplota je pojmenována podle Pierra Curie (1859-1906).

magnetismus Curieova teplota

Curieova teplota je teplota, nad kterou feromagnetické materiály ztrácení jejich permanentní magnetické pole; magnetismus zcela zmizí.

Nad touto teplotou se materiál chová paramagneticky. Když teplota roste, molekulární excitace postupně narušuje vyrovnání rotace. Když je dosažena Curieova teplota, vyrovnání se zhroutí, protože tepelná energie překročila energii magnetické interakce.

Je obtížné Curieovu teplotu přesně změřit. Jednak permanentní magnetické pole kolem materiálu částečně zmizí. A za druhé se Curieova teplota značně liší i na základě malých množství nečistot v materiálu.

Například, pokud se magnet AlNiCo zahřeje nad svou Curieovu teplotu 850 °C, nebude již feromagnetický. Následně se stane paramagnetickým. Jakmile se magnet znovu ochladí, permanentní magnetické pole se nevrátí. Bude se však jednat o nová magnetická pole v malých oblastech v materiálu, tzv. Weissovy domény (Weiss 1865-1904), ale tato pole jsou zarovnána v náhodném směru, takže jejich vektorový součet nemá za následek vnější magnetické pole. Je však možné magnet znovu zmagnetizovat.

Feromagnetické prvky a slitiny s jejich Curieovými teplotami:

Materiál Curieova tepl.
Fe 770 °C
Co 1115 °C
Ni 354 °C
Gd 19 °C
AlNiCo 850 °C
Ferit 450 °C
Sm Kobalt 750-825 °C
Nd-Fe-B 310-340 °C

 

Magnetmaterialien

Ferritmagnete
 
 

Ferritmagnete Weiter lesen

Neodym (Neoflux®) Magnete

Neodym Neoflux Magnete Weiter lesen

Samarium-Kobalt Magnete
 

Samarium-Kobalt Magnete Weiter lesen

Aluminium-Nickel-Kobalt Magnete

Aluminium Nickel Kobalt Magneten Weiter lesen

Kunststoff-gebundene Magnete

Kunststoffgebunde Magnete Weiter lesen